25 research outputs found

    Middleware platform for distributed applications incorporating robots, sensors and the cloud

    Get PDF
    Cyber-physical systems in the factory of the future will consist of cloud-hosted software governing an agile production process executed by autonomous mobile robots and controlled by analyzing the data from a vast number of sensors. CPSs thus operate on a distributed production floor infrastructure and the set-up continuously changes with each new manufacturing task. In this paper, we present our OSGibased middleware that abstracts the deployment of servicebased CPS software components on the underlying distributed platform comprising robots, actuators, sensors and the cloud. Moreover, our middleware provides specific support to develop components based on artificial neural networks, a technique that recently became very popular for sensor data analytics and robot actuation. We demonstrate a system where a robot takes actions based on the input from sensors in its vicinity

    Lazy Evaluation of Convolutional Filters

    Get PDF
    In this paper we propose a technique which avoids the evaluation of certain convolutional filters in a deep neural network. This allows to trade-off the accuracy of a deep neural network with the computational and memory requirements. This is especially important on a constrained device unable to hold all the weights of the network in memory

    Learning to Grasp from a single demonstration

    Get PDF
    Learning-based approaches for robotic grasping using visual sensors typically require collecting a large size dataset, either manually labeled or by many trial and errors of a robotic manipulator in the real or simulated world. We propose a simpler learning-from-demonstration approach that is able to detect the object to grasp from merely a single demonstration using a convolutional neural network we call GraspNet. In order to increase robustness and decrease the training time even further, we leverage data from previous demonstrations to quickly fine-tune a GrapNet for each new demonstration. We present some preliminary results on a grasping experiment with the Franka Panda cobot for which we can train a GraspNet with only hundreds of train iterations.Comment: 10 pages, 5 figures, IAS-15 2018 workshop on Learning Applications for Intelligent Autonomous Robot
    corecore